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J. Phys. A: Math. Gen. 19 (1986) 1007-1025. Printed in Great Britain 

Generating functions for connected embeddings in a lattice: I. 
Strong embeddings 

M F Sykes 
Wheatstone Physics Laboratory, King’s College, University of London, Strand, London 
WCZR 2LS, UK 

Received 15 July 1985 

Abstract. The method of partial generating functions developed to derive high field 
expansions for the k ing  model enumerates unrestricted strong embeddings in a lattice. 
The method is modified to enumerate connected embeddings only. An explicit general 
receipt is given for the relation between unrestricted and restricted generating functions. 
For the body-centred cubic lattice the number of connected strong embeddings of clusters 
with up to 13 sites is derived. 

1. Introduction 

In a recent paper, Redelmeier (1981) reports the enumeration of all the polyominoes 
containing 24 squares or less on an unbounded chessboard; the enumeration used ten 
months of computer time. He concludes that any technique that actually generates 
every polyomino is unlikely to get much further. The enumeration of square poly- 
ominoes is only one of a large number of enumeration problems that arise in the study 
of what may be rather loosely called lattice animals; they arise in the graph theoretic 
treatment of the cell growth problem (see Harary (1967) for a bibliography) and also 
in lattice statistics and the percolation problem (see the reviews by Shante and 
Kirkpatrick 1971, Essam 1971, 1972, 1980, Kirkpatrick 1973, de Gennes 1976, Welsh 
1977, Wu 1978 and Stauffer 1979), and in many other physical applications. The 
mathematical problem presented by pol yominoes in general has been considered, 
among others, by Klarner (1967), Lunnon (1971,1972) and Golomb (1967). 

We shall treat Redelmeier’s problem as equivalent to the enumeration, for ascending 
n, of the number of connected clusters (per site) of n sites on the simple quadratic 
(or plane square) lattice; the number of connected clusters of n sites is identical to 
the number of connected strong embeddings (or section graphs) of n sites. (For precise 
definitions of these graph theoretical terms see Essam and Fisher (1970)). 

As a single result in computer enumeration the achievement of Redelmeier is 
impressive. He finds a total of 5239 988 770 268 polyominoes of size 24 and these were 
counted on a PDP-11/70 computer at a rate of approximately 200 every millisecond. 
For many applications it would seem desirable to retain more information than just 
the bare number of clusters; such requirements are likely to reduce the effective counting 
rate. Using the methods developed by Heap (1963) and Martin (1974) the number of 
connected clusters on the triangular lattice (hexagonal polyominoes) together with 
information on their site perimeter, has been obtained by Margolina et al (1983) using 
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1008 M F Sykes 

an IBM 3701168. A total of 918 837 374 clusters were enumerated in 55 hours, which 
corresponds to a counting rate of 5 every millisecond; this is some 40 times slower 
than Redelmeier's enumeration of the bare numbers for the simple quadratic. These 
two counting rates are not strictly comparable because of the different symmetries of 
the two lattices. Margolina et al's counting rate could probably be increased by writing 
a specialised program restricted to the triangular lattice; but one conclusion can be 
drawn with confidence: the counting of connected clusters is a very time consuming 
computer task. For two-dimensional lattices extra terms can sometimes be added by 
using the special techniques of percolation theory described by Sykes and Glen (1976) 
and Sykes er a1 (1976a, b, c), hereafter referred to as I*-IV* respectively, and references 
cited therein. 

The difficulty of enumerating connected clusters for three-dimensional lattices is 
increased by the inapplicability of many of the special techniques available in two 
dimensions and the very rapid growth rate of the totals. For example, for the body- 
centred cubic we quote the following sequence for the number of connected clusters 
grouped by sites: 

Sites n Number of clusters A, 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

1 
4 

28 
216 

1790 
15 587 

140 746 
1305 920 

12 374 069 
119 223 556 

1164 465 225 
11502924648 

114721053058 

The values up to n = 11 can be obtained from the data given in IV*, based on computer 
enumeration of clusters with up to 10 sites; the total for 11 sites then follows by the 
methods described in I*-IV*. The last two terms have been added by the method 
described in this paper. A computer routine as fast as that of Redelmeier would require 
approximately 150 hours to complete n = 13; using the method we describe below a 
table of binomial coefficients and a desk calculator would suffice. To obtain the same 
total, together with information on the number of bonds in the clusters, required about 
27 seconds of CDC 7600 time to perform some algebra. 

This paper reports a feasibility study: we investigate whether the method of partial 
generating functions used by Sykes et a1 (1965, 1973a, b, c, d, e, 1975a, b, c) and Sykes 
(1979), hereafter referred to as I'-X+ respectively, can be applied to the present 
problem. 

Before describing the theory of partial generating functions, and the necessary 
modifications thereto, we particularise our objectives more precisely. We denote the 
number of connected n-site clusters (per site) on an infinite lattice by A, ; and define 
a generating function 

F(x)=A,x+A2x2+A3x3+.  . .. (1.2) 



Connected embeddings in a lattice. I 1009 

As noted above these bare numbers are usefully supplemented by more detailed 
information. One parameter of interest is the bond content; any strong embedding of 
n sites must be connected by at least ( n  - 1 )  bonds. We introduce a dummy variable, 
b, to record the bond content and write 

F ( x ,  b )  = c A,( b)x‘  ( 1 . 3 )  
I 

where A,( b )  is a polynomial in b and A,( 1 )  = A,. Since we shall only use functional 
expressions of this kind formally, to represent data grouped in a conventional way, 
we shall allow ourselves a certain licence and use the same symbol, F, on the left-hand 
side throughout; whether any particular ancillary parameter such as b, or any other 
that we later introduce, is explicitly written into the right-hand side is immaterial. 
Often a particular parameter which is not explicitly written in can be regarded as being 
carried silently; no confusion should arise: the sense should always be clear from the 
context. 

For the body-centred cubic the expansion begins 

F(x ,  b )  = x + 4bx2 + 28b2x3 + (204b3 + 12b4)x4+.  . , ( 1.4) 

and the coefficient of x4 records the fact that out of 216 connected clusters of four 
sites, 204 have three bonds and 12 have four. The method of partial generating functions 
will be developed to supplement the information in ( 1 . 1 )  in this way; we give the 
values of A , ( b )  through A I 3 ( b )  in appendix 1 .  

The method of partial generating functions is most efficient when applied to bipartite 
(or loose-packed) lattices; the bipartite lattices usefully studied divide into two 
equivalent sublattices, A and B. We adopt the convention (of It-Xt) that each of 
these sublattices has N sites. We can then regroup the data in a modified form, and 
rewrite the generating function as 

2 F ( x , y )  = A ~ , ~ ~ + A , , , ~ + A Z , ~ X ~ + A I , I X . Y + A ~ , ~ Y ’ + .  . .. ( 1 . 5 )  

In ( 1 . 5 )  each coefficient A,,, is the number of connected clusters (per sublattice site) 
of r +  s sites of which r are A sites and s are B sites. For the body-centred cubic the 
expansion begins 

2F(x ,  y )  = x + y + 8xy + 28x2y + 28xy2+ 56x3y + 320x2y2 + 56xy3 + . . . , (1 .6)  

Graphical information sufficient to derive the expansion in this form up to five sites, 
by direct inspection of the clusters, is given by Domb (1960, appendix IV). The two 
extra parameters considered above can be taken together in a generating function 

where the coefficient of x‘y’ is a finite polynomial in b that records, in the conventional 
way, the bond content of all the connected clusters of r A sites and s B sites. 

2. Method of partial generating functions 

The analogue of the method described in I+  and VI+ is to provide partial generating 
functions F, for the polynomials A,,, of (1 .7 ) ;  each F,, corresponds to the solution 
when the number of sites on one sublattice, which we shall take to be the A sublattice, 
is equal to n. The partial generating function F,, provides the polynomials A, , , ,  for 
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fixed n. We shall call the A sites primary sites and the B sites secondary sites; notice 
that our convention is the opposite to that used in I+-X+. The contributions can be 
set out in an array: 

Fo = A0.l 

Fi = A1.o + Ai, ,  + Ai.2 + A1.3 + Ai.4 + * . . 
F2 = 

F3 = A 3 , 1 + A 3 , 2 + * .  . 
A2,1  + A 2 , 2  + A 2 , 3  + . 

F4 = A4,1 +. . . 
where A,,o = 0 if r > 1 and Ao,, = 0 if s > 1 .  

An important step is to exploit the symmetry condition 

A,,, = A , ,  ( 2 . 2 )  

which holds because the two sublattices are equivalent; it follows that the first n partial 
generating functions are sufficient to determine all A , ,  for r + s s 2n + 1 .  

To take a specific example, the clusters with five sites can be determined from the 
partial generating functions through F2 only. In the sequecce 

( 2 . 3 )  

the last two contributions follow from the symmetry condition ( 2 . 2 ) ;  the factor 2 on 
the left-hand side allows for our convention that the number of sites on each sublattice 
is N .  

Partial generating functions for strong embeddings, or section graphs as we shall 
call them throughout our treatment, which are unrestricted (i.e. not necessarily con- 
nected) and their application to the Ising problem are described in detail in I+-X’. 
To illustrate that part of the theory that is relevant to our objective we take as an 
example the derivation of the partial generating function of third order for the 
body-centred cubic lattice. To obtain this, Sykes er a1 (1965, I + )  classified all the 
distinct choices of three primary or A sites on the lattice. Each chosen A site has eight 
nearest neighbours (on the B sublattice) which are described as its shadow; each 
shadow defines a cube; the interactions of the three cubes corresponding to any 
particular choice of A sites is significant. 

We consider one possible choice illustrated below. We have to provide a generating 
function for all possible choices of B sites; the generating function is to provide 
information on the number of nearest-neighbour linkages, or bonds, for each choice. 

The number of arrangements of three cubes of the above configuration on a 
conventional 2 N  site lattice (i.e. N A sites, N B sites) is 2 4 N .  The three A sites 
collectively cast shadows which affect 18 distinct B sites. There will be (N-18) B 
sites that are not neighbours of any of the chosen A sites and these will not contribute 
any bonds if chosen. These can all be accounted for by a factor ( 1  There 
are 13 B sites which are first neighbours of only one A site; these can be accounted 
for by a factor ( 1  + by)’3.  There remain four B sites which are first neighbours of two 
A sites and one B site which is a first neighbour of three A sites; these can be accounted 
for by factors (1 + b2y)4 and (1 + b3y)  respectively. All the possibilities are therefore 
generated by the product 

( 2 . 4 )  (1 + y )  N - 1 8 (  1 + by)”( 1 + b2y)4(  1 + b3y)  
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which we regard as a contribution to the unrestricted partial generating function in 
the special sense that the connectivity of the embeddings generated is unrestricted. 

The contribution of the product (2.4) to the free energy of the Ising model is treated 
in detail in I’ and 111’. The significant part of the product is there shown to correspond 
formally to the terms independent of N, i.e. those generated by 

( 1  + by)I3( 1 + 62y)4 (  1 + b 3 y ) / (  1 + y ) ”  ( 2 . 5 )  

which is conveniently denoted by the code (18 ,13 ,4 ,1) .  More generally, any code 
corresponding to any choice of any number, r, of cubes can be interpreted by the 
substitution 

(A,  a, p, y, . . .) = ( 1  + b y ) ” (  1 + b2y)’(1 + b 3 y ) y . .  . / ( l  + y ) *  (2.6) 

h = a + p + y  . . .  (2.7) 

where 

and, after expansion of the right-hand side, the coefficient of y’6‘ represents the number 
of choices of r A sites and s B sites, having t nearest-neighbour bonds between them, 
that correspond to the chosen configuration of r A sites. 

As a matter of convention, since we will be concerned ultimately with the enumer- 
ation of connecred embeddings, we shall henceforth omit from any partial generating 
function all those terms which correspond to an isolated B site; it is evident that such 
terms cannot contribute to any connected component. We thus shorten the product 
(2.4) to 

( 1  + 6y)I3(  1 + b ’ ~ ) ~ (  1 + b 3 y )  (2.8) 

which can be regarded as a partially restricted generating function; no embeddings 
generated will contain any isolated B sites. Isolated A sites are not excluded. 

To complete our task we have further to delete from (2.8) any embeddings that 
are not connected. We describe a method of achieving this in the next section. 
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3. Restricted and unrestricted generating functions 

We begin this section by taking as examples the finite graph G below: 

J K 

which we regard as representing a possible mapping of shadow intersections as 
described in the previous section. For convenience we have chosen a mapping which 
is neither too degenerate not too complicated; it evidently does not correspond to a 
realisable arrangement of cubes. We shall study the connectivity of the (primary) A 
sites for different choices of the (secondary) B sites. Regarded as a finite graph the 
sets of A and B sites of G are obviously not equivalent but for our present purpose 
this is immaterial; we shall restore the symmetry later in applications. We regard the 
A sites as always occupied and label them I ,  J, K. By the methods of the previous 
section we can immediately derive an unrestricted section graph enumerator which we 
write 

G[ I J K ]  = (1 + b ’ ~ ) ~ (  1 + b 3 y )  

= 1 + ( 3  b2+  b 3 ) y  + ( 3  b4+  3 b 5 ) y 2 +  ( b6+ 3 b 7 ) y 3  + b9y4. (3 .1)  

Essentially the unrestricted enumerator is seen to be a product of simple polynomials 
auxiliary generating polynomials, each associated with an individual B site. Each 
auxiliary polynomial is determined only by the number, r say, of neighbours of the B 
site and can be provided in isolation. The graphs that map the environment always 
have the same characteristic structure of r edges radiating from a central vertex; such 
graphs are usually called vertex slurs (Essam and Fisher 1970). The general rule is 
that an r-vertex star yields a factor ( 1  + b‘y).  The unrestricted generating function for 
any bipartite graph can thus be written down by inspection, currente calamo. 

To return to the unrestricted enumerator (3 .1)  we note that it summarises the site 
and bond content of all the 16 section graphs obtained by selecting any number of B 
sites while the A sites are always occupied. Foi example the term 3b4y2 corresponds 
to the three possible section graphs with two B sites and four bonds illustrated below. 

---? 0- - -* 
iu l  i b l  

We now define a restricted (that is, connected) section graph enumerator in an 
analogous way; for our example: 

(3 .2)  G * [ I J K ]  = b3y  + (2b4+  3 b 5 ) y 2 +  ( b 6 + 3 b 7 ) y 3 +  b9y4. 

It summarises all the section graphs that connect the three A sites. The coefficient of 
b4y2 is now two because the section graph (c )  does not connect the A sites. For 
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elementary examples the restricted enumerator can be written down by inspection; we 
shall always denote restricted quantities by an asterisk. 

We now introduce more detailed section graph enumerators (partitioned 
enumerators) in the following way. For any partition of the A sites into mutually 
disjoint subsets we define corresponding unrestricted enumerators that summarise all 
the section graphs which do not connect any pair of A sites in diferent subsets. In our 
example, excluding IJK, there are four possible partitions of the B sites and we find 
by inspection 

G [ Z , J K ] = l  

G[J, I K ]  = ( 1  + b2y)2  

G [ K ,  153 = ( 1  + b 2 y )  
( 3 . 3 )  

G[I ,  J, K ]  = 1 .  

In ( 3 . 3 )  the commas in the arguments of each function G separate disjoint sets of 
A sites. Notice that in G[J, ZK] the essential condition is that J is not connected to 
I or K ;  I and K may or may not be connected. Unrestricted partitioned enumerators 
are readily written down by deleting from the full product of auxiliary polynomials 
any that correspond to vertex stars any pair of whose A sites lie in disjoint sets. 

In an analogous way we introduce restricted partitioned enumerators denoted by 
an asterisk. Thus, while G[J, ZK] enumerates all section graphs subject to the restriction 
above, G*[J, I K ]  enumerates only those section graphs for which (in addition) any 
two A sites in the same set are connected. 

We find on inspection 

G*[Z,JK]=O 

G*[J, ZK]  = 2b2y+  b4y2  

G*[ K ,  153 = b2y 
(3.4)  

G*[ I,  J,  K ]  = 1 .  

Notice that the zero corresponds to the fact that it is not possible to connect J to K 
by a section graph that does not also connect these to I. Our objective is to obtain 
expressions for the partitioned G* in terms of the partitioned G ;  our procedure is 
perfectly general. 

We take it as evident that 

G [  IJK]  = G*[ IJK]  + G*[ I, J K ]  + G*[J, I K ]  + G*[ K, ZJ] + G*[ I,  J, K ]  ( 3 . 5 )  

where the right-hand side is an exhaustive enumeration of all the possible partitions 
of the vertex set I, J, K into subsets. Likewise 

G [ I , J K ] =  G*[I ,JK]+G*[I ,J ,  K ]  

G[J, I K ]  = G*[J, I K ]  + G*[I,  J, K J 
G [ K ,  ZJI = G*[K, U]+ G*[I, J, K I  

(3 .6)  

and finally 

G[ I, J, K ]  = G*[ I,  J, K ] .  (3.7) 
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The essential point is that any section graph belongs to one, and only one, restricted 
partitioned enumerator. 

The above equations are easily inverted to obtain corresponding expressions for 
the restricted enumerators in terms of the unrestricted enumerators. In particular we 
find for the total connected enumerator 

G*[ IJK ] = G [  IJK 3 - G [  I, JK ] - G [  J, ZK 3 - G [  K, ZJ] + 2 G [  I, J, K 1. (3.8) 

The importance of the above inversion lies in the fact that the unrestricted enumerators, 
as we have noticed above, are easily written down with the aid of the auxiliary 
polynomials; the value of G*[ ZJK] then follows from (3.8). 

The above arguments are readily generalised to any number of A sites. To take a 
more ambitious example we consider the mapping: 

with four primary sites. The unrestricted enumerators are readily seen on inspection 
to be 

G [  ZJKL] = (1 + b ’ ~ ) ~ (  1 + b4y) 

G[ I ,  JKL] = G[J, ZKL] = G [  K ,  ZJL] = G[ L, ZJK] = ( 1  + b’y)’ 

G [  ZJ, KL]  = G[ ZL, JK] = ( 1 + b’y)’ 

G[ ZK, JL] = 1 (3.9) 

G[ZJ, K ,  L ] =  G[JK, I, L ]  = G[KL, I, J ]  = G[ZL, J, K ] = ( l  +b2y)  

G[ZK, J, L] = G[JL, I ,  K ]  = 1 

G[I,  J, K ,  L]  = 1. 

By extending the logical procedure used for three sites we obtain the result 

G*[ ZJKL] = G[ ZJKL] - G[ I, J K L ]  - C G[ IJ, K L ]  
4 f 

+ 2 C  G[ZJ, K ,  L]-6G[Z, J, K ,  L ]  (3.10) 

where the subscripts denote the number of distinct terms in each summation. On 
substituting (3.9) in (3.10) we obtain 

G*[ZJKL] = b4y+4b6y2+(4b6+6b8)y3+(b8+4b’o)y4+ b’*y5. (3.11) 

In this particular example, because of the symmetry of the graph chosen, it is easily 
verified that (3.1 1) describes the connected section graphs exhaustively. To simplify 

6 
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the general treatment we now introduce a contracted notation; we denote the summation 

(3.12) 

by f 2 , 2 ,  the suffixes on f simply recording the fact that it represents the sum of all 
enumerators corresponding to divisions of the A-vertex site into two sets, each of 
cardinality 2. In general f , 5 , t , .  . . will denote the sum of all the enumerators that 
correspond to distinct unordered partitions of the A-vertex set into sets of cardinality 
r, s, r, . . .. In this notation our results so far may be summarised as follows 

G [  IJ, KL]  = G [  ZJ, KL]  + G[ I K ,  JL] + G [  IL, J K ]  
3 

1 A site fl =fT and inversely f T =fl 

2 A sites f 2  =f 2* +f 7.1 f T = f 2  - f I J  

3 A sites f 3  =f T +f T,2 +f T,lJ 

f I . 1  = f T , 1  

f 1 . z  =f 7.2 + 3f T.1.1 

h,IJ =f T.I.1 
fT,*=fl.2-3fi,l,l 

fT.1.1 = f i , l , l  * 

In principle the problem is now completely solved. The set of equations for 
unrestricted enumerators can always be written down and inverted by successive 
substitutions. The outcome can be further contracted by recording only the coefficients 
in the above equations in the form of a matrix, it being understood that the rows and 
columns are ordered in some conventional dictionary ordering of the partitions of n 
(such as for example, Riordan (1958) ch 6, table 1.) 

We thus summarise the solution for 4 A sites by 

M4 4 13 22 212 l 4  M: 4 13 22 2 i 2  i4  

4 1 1 1 1 1  4 1 - 1  -1 2 -6 
13 1 0 2 4  13 1 0 - 2  8 
22 1 1 3  22 1 -1 3 (3.14) 

212 1 6  212 1 -6 
i4 1 14 1. 

We give in appendix 2 the values of M,-M, together with their respective inverses 
MT-M?. Although straightforward in principle, the direct derivation of these results 
is heavy; we give in the next section a general receipt for the matrix elements of M ,  
and M:.  

4. General prescription for the fundamental inversion 

The general expressions for the elements of the matrices M and M *  of the previous 
section are equivalent to those derived by Craig (1928) and Meeron (1957) in their 
studies of the relation between moments and cumulants in the statistics of independent 
variables introduced by Thiele (1907); that their results are immediately applicable to 
the present inversion and the extensions thereto we shall later make, which are more 
general in that they correspond also to the probabilities associated with dependent 
variables, is evident from the treatise of Frichet (1940). The arguments of the previous 
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section are a direct application of the simple principle of inclusion and exclusion in 
its more advanced form; the basic ideas are developed by Whitney (1932), Jordan 
(1933, 1934), Bonferroni (1936), Broderick (1937), Gumbel (19381, Geiringer (1938) 
and at length by FrCchet (1940, 1943). The inversion can be treated rigorously by 
the method of exponential generating functions (see, for example, Riordan (1958), ch 
2) and particularly the treatise of MacMahon (1915, 1916). Essentially it rests on the 
advanced theory of Stirling numbers, which, like the Stirling numbers themselves, is 
constantly being rediscovered. An important application is to the determination of 
the derivatives of composite functions (Riordan 1946, Teixeira 1880). There exists an 
extensive lilerature; among modern articles that may profitably be consulted are 
Sherman (1964), Kubo (1962), Good (1961), Uhlenbeck and Ford (1962), Spitzer 
(1956) and Lukacs (1955); also relevant are the paper by Bell (1934) on exponential 
polynomials and those on exponential integers by Levin and Dalton (1962) (see also 
Becker and Riordan 1948, Broggi 1933). The theoretical background is adequately 
covered by the articles cited; we therefore simply give an explicit general receipt for 
the elements of M and M*.  

The problem is one of distribution and occupancy. At seventh order the partitions 
of seven into six parts and into seven parts are assigned to the three partitions of seven 
into four parts in the following way 

(41') 10 35 20 -210 

(231) - 15 - 105 - 15 -105 (4.1) (3212) 40 210 50 -420 

65 350 85 -135 

Following Riordan (1953, ch 5 , s  6) the number of ways of assigning n different objects 
into m like cells, with no cells empty, is S(n, m), the Stirling number of the second 
kind. The totals for the first two columns in our example correspond to the values 
S(6,4)  = 65 and S(7 ,4)  = 350 respectively. Further, following Riordan (1958, ch 2, 
0 7) ,  if we denote by S * ( n ,  m) the Stirling member of the first kind, the corresponding 
totals for the inverse matrix will be S*(6,4) = 85 and S*(7,4)  = -735 respectively. 

To obtain the column elements in detail we first notice that the explicit formulae 
of Ettinghausen (1826, see also Ginsburg 1929) for the Stirling numbers: 

S(n, m )  = E  n!/(A,)!(A2!)(A3!) .  . . (1! )A1(2! )4(3! )4 . .  . 
(-1)"-"S*(n, m )  = E  n!/(A,!)(A2!)(A3!) .  . . (1)A1(2)A2(3)A3.. . 

(4.2) 

(4.3) 

for all integer solutions of 

A , + A 2 + A 3 +  . . . =  m 

A,+2A2+3A,+ . . .=  n 
(4.4) 

give the required matrix elements explicitly when the objects to be assigned (all 
regarded as distinguishable) are of one kind (in our example all the same integer: 
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seven ones). Carrying out the above receipt gives the results 

S(7 ,4)  = 35+210+ 105 = 350 

S(6,4)  = 20+45 = 65. 

The first of these gives the entries required, the correct assignment of each being 
indicated by the values of the solution of (4.4); the second corresponds to the entries 
in M6 where the partition of six into six parts (all ones) is assigned to the two partitions 
of six into four parts. In our example the first column of entries in (4.1) corresponds 
to distributing six distinct objects of two kinds (ones and twos and in our instance five 
ones and one two) into four cells. 

The required generalisation of the first formula of Ettinghausen is just 

S ( n , ,  n 2 , m ) = ~ n , ! n 2 ! / A l o ! A o , ! A 2 0 ! A l l !  . . . ( l ! O ! ) A l o . . .  (4.5) 
for all integer solutions of 

A l o +  Aol + Azo+ A l l  + AO2+. . . = A,, = m 

AI0 +2A20+ All +. . . = E  rA,, = n,  

A01 + A l l  +2AO2+.  . . = SA,, = n 2 .  

For each solution the value of A,, will correspond to the number of cells which contain 
r objects of the first kind and s of the second. The general factors in the denominator 
are (Ar,!) for the first run and ( ~ ! s ! ) ~ , x  for the second run. To obtain S * ( n , ,  n 2 ,  m )  
it is only necessary to divide every factor inside brackets in the second run by ( r  + s - l ) !  
and give the final outcome the sign of ( - l ) ' l + " 2 - " '  . For the case s = 0 every factor 
inside brackets in the second run will reduce to r ! / (  r - l ) !  = r and the second formula 
of Ettinghausen is recovered identically. 

In our example we find four distinct solutions 

Solution 
Corresponding Corresponding Contribution 
assignment partition to s to s* 

which collectively sum to S(6,4)  and S*(6,4) with the required divisions. 
More generally, the formula for three kinds of object is the natural generalisation 

of that for two; for the Stirling number of the second kind the first run in the 
denominator consists of all the factors A,,,! and the second of all the factors ( r ! ~ ! t ! ) ~ ? s r .  
To invert the matrix every factor inside brackets in the second run must be divided by 
( r  + s + r + 1) ! and the whole product given the sign of ( -1 )  ' 1 + ' 2 + ' 3 - ~  . The generalisa- 
tion to any number of objects is evident. 

5. Application to body-centred cubic problem 

We now apply the techniques described in 00 2 and 3 to the body-centred cubic lattice. 
To obtain the first two partial generating functions we illustrate below all the arrange- 



1018 M F Sykes 

ments of one and  two cubes together with the full set of partitioned unrestricted 
enumerators for each. 

Now the partial generating function for restricted clusters can be obtained by substitu- 
tion in 

where the summations are taken over all distinct arrangements of one and two cubes 
respectively. If we adopt the convention of writing ( 1  + b y ) “ ( l  + b 2 y ) P . .  . as {a, /3 . . .} 
the result may be written: 

F1= ( 4 )  
(5 .3)  

F2 = 3 { 8 , 4 } + 6 { 1 2 , 2 } + 4 { 1 4 ,  1 )  - 3 { 8 }  - 6{ 12) -4{ 14). 

In (5.3) we have suppressed the factor N to obtain the partial generating functions 
following the conventions of 0 2. These functions expand (after allowing for the 
primary sites represented by the variable x )  as 

F1 = x+8bxy+28b2xy2+56b3xy3+70b4xy4+ .  . , (5.4) 

F2 = 28b’x’y-C 296b3x2y2+24b4x2y’+ 1492b4x2y3+216b5x2y3+ 12b6x2y3 + . . . . ( 5 . 5 )  

The symmetry condition ( 2 . 2 )  is satisfied by the coefficients of xy2 in (5 .4)  and x 2 y  
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in (5.5); collecting the terms with appropriate weighting gives the values 

A,(b) = 1 

A4( b) = 204b3 + 12b4 

A2( b) = 46 A,( b) = 28b2 
(5.6) 

A,(b) = 1562b4+216b5+ 12b6. 

By inspection of all the 237 N possible connected arrangements of three cubes the next 
partial generating function is readily obtained in terms of 31 distinct codes 

F3 = 12{10,4,2} + 24{ 13,4,1} + 8{15,3,1} -6{8,4} +3{8,8} - 24{ 10,2}-24{ 12,2} 

- 24{ 12,4} + 24{ 12,6} - 24{ 13, l}  - 24{ 13,3} -24{ 14, l}  -24{ 14,4} 

+24{14,5}-24{15, l}-84{16,2}+42{16,4}-72{18,1}-72{18,2} 

+72{18,3}-56{20,l}+28{20,2}+3{8}+ 12{10}+24{12}+24{13} 

+ 24{ 14} + 16{15} +42{16} + 72{18} +28{20}. (5.7) 

By listing all the 4995N arrangements of four cubes, 114219N arrangements of 
five cubes and 2753 781 N arrangements of six cubes the author has obtained corye- 
sponding expressions for F4,  F5 and F6 in terms of 124,434 and 1456 codes respectively. 
From these the polynomials in appendix 1 were obtained by expansion on a CDC 7600 
in about 27 seconds of CPU time. 

If we keep only the essential variable y and set the ancilliary variable b equal to 
unity the results (5.3) and (5.7) may be written in terms of the new variable Y = l + y  
as 

F, = YE 

F2 = 4 Y1’+2 YI4-3 Yl’ -3 YE 

F3 = 28 Yz2+ 16 Y2’ - 2 YZo-40 YI9+ 12Y1* - 15 YI6 - 8 Y15 

- 24 YI4+ 24 YI3 - 6 YI2+ 12 Y’O+ 3 YE. 

(5.8) 

In this form F4, F5 and F6 have only 19, 28 and 35 coefficients respectively and we 
quote these expressions in appendix 3. 

6. Conclusions 

The work described in this paper was undertaken as a feasibility study. By using the 
method of partial generating functions we have been able to produce a table of 
connected clusters on the body-centred cubic lattice through A13. The expressions for 
FI-F6 of appendix 3 used to provide this could easily be expanded using a desk 
calculator and a table of binomial coefficients; in contrast, as noted in our introduction, 
direct enumeration of the bare numbers seems likely to require some 150 hours of CPU 

time. It is difficult to make a direct comparison since the complicated sequence of 
operations we have undertaken cannot be usefully measured in CPU time. However, 
consider the problem of obtaining the values of the next two entries in ( l . l ) ,  A,, and 
A15 respectively. The direct enumeration would certainly seem to require CPU times 
of the order of some 600 days; preliminary trials indicate that using a computer instead 
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to enumerate all the arrangements of seven cubes and to perform at the same time all 
the summations required to derive the partial generating function F7 would need about 
12 hours of CPU time. The present method should thus prove effectively a factor of 
1000 times faster. Our general conclusion is that if a large amount of machine time 
is available it would be far more efficient to use it to derive partial generating functions 
than to count clusters directly. 

Appendix 1. Strong embeddings of clusters in the body-centred cubic lattice grouped 
by site and bond content 

A, = 1 

A3 = 28b2 

A4=  204b3+ 12b4 

A5 = 1562b4+216b5+ 12b6 

A6 = 12 544b5 + 2704b6 + 3 12b7 + 276' 

A, = 104 756b6+29 952b7+5262b8+704b9+72bI0 

A8=900 168b7+318 594b8+72 096b9+ 12 844b10+2016b11+ 198bI2+4bl3 

A9=7901 843b8+3333 352b9+898 692bL0+195 120b"+38 370b12 

+ 5976b13+692b14+24b'5 

Alo=70545 284b9+34547 832b'0+10698912b' '+2676258b12 

+612 060b13+ 120 060b14+20 576bI5+2418bl6+ 156bi7 

A,1 =638 589 820bI0+355 920072b"+ 123 953 660b12+34643 968bI3 

+ 8 846 736bL4+ 2009 48Obl5 +418 789bI6+ 72 168bI7 +9720b1' 

+800bL9+ 12b20 

A12=5847 741 388b"+3653 334942bI2+1409 307 172b13 

+432 705 O76bl4+ 120462 316b"+30 389 128bI6+7161 624bI7 

+ 1503 868b1'+274 7O4bl9+40 338b2'+3924b2'+ 168b22 

A,, = 54 073 952 472bI2+37 417 241 256bI3+ 15 804 769 74Obl4 

+5270953 664b15+1578040 191b16+431 637408b17 

+ 111 103 536b1'+26355 984bI9+5715 468b20+1090672b2' 

+ 171 636b22+ 19 680b23+ 1327b24+24b2f. 
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Appendix 2. Conversion matrices relating restricted and unrestricted generating 
functions 

~ 

M5 5 41 32 312 221 21’ is  

5 1 1 1 1 1 1 1 

41 1 0 2 1 3 5 

32 1 1 2 4 10 

312 1 0 3 10 

22 1 1 3 15 

2 i 3  1 10 

15 1 

~ ~ 

MT 5 41 32 312 221 21’ Is  

5 1 -1 - 1  2 2 -6 24 

41 1 0 -2 -1 6 -30 

32 1 -1 -2 5 -20 

312 1 0 -3 20 

221 1 -3 15 

2 i3  1 -10 

IS 1 

M6 6 51 42 32 412 321 23 313 22i2 2 i4  i6 

6 

51 

42 

32 

412 

321 

23 

313 

2212 

2 i4  

l 6  

1 1 1 1 1 1 1 1 1 1 1 

1 0 0 2 1 0 3 2 4 6 

1 0 1 1 3 3 3 7 15 

1 0 1 0 1 2 4 10 

1 0 0 3 1 6 15 

1 0 3 4 16 60 

1 0 1 3 15 

1 0 4 20 

1 6 45 

1 15 

1 
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M: 6 51 42 32 412 321 23 313 2*i2 2 i4  i6 
~~ ~ ~ 

6 1 -1 -1 -1 2 2 2 -6 -6 24 -120 

51 1 0 0 -2 -1 0 6 4 -24 144 

42 1 0 -1 -1 -3 3 5 -18 90 

32 1 0 -1 0 2 2 -8 40 

412 1 0 0 -3 -1 12 -90 

32 1 1 0 -3 -4 20 -120 

23 1 0 -1 3 -15 

313 1 0 -4 40 

2212 1 -6 45 

2 i4  1 -15 

l 6  1 

M ,  7 61 52 43 512 421 321 322 413 3212 231 314 z2l3 21’ 1’ 

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

61 1 0 0 2 1 1 0 3 2 1 4 3 5 7  

52 1 0  1 1  0 2 3 2 3 6 5 1 1 2 1  

43 1 0  1 2  1 1  3 3 5 7 1 5 3 5  

512 1 0  0 0 3 1 0  6 3 1 0 2 1  

421 1 0  0 3 2 3 12 9 3 5 1 0 5  

321 1 0  0 2 0 4 6 2 0 7 0  

322 1 0  1 3  3 7 2 5 1 0 5  

413 1 0  0 4 1 1 0 3 5  

23 1 

314 1 0  5 3 5  
2213 

2 i5  1 21 

1’ 1 

3212 1 0 6 6 40 210 

1 0 3 15 105 

1 10 105 
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M, 7 61 52 43 512 421 321 322 413 3212 131 31' z2l3 21' l7 

7 

61 

52 

43 

512 

42 1 

321 

322 

413 

3212 

2) 1 

2213 

21S 

1, 

3 l4 

1 -1 -1 -1 2 2 2 2 -6 -6 -6 24 24 -120 720 

1 0 0 -2 -1 -1 0 6 4 2 -24 -18 120 -840 

1 0 -1 - 1  0 -2 3 3 6 -12 -18 84 -504 

1 0 -1 -2 - 1  2 4 3 -14 -14 70 -420 

1 0 0 0 -3 - 1  0 12 6 -60 504 

1 0 0 -3 -2 -3 12 15 -90 630 

1 0 0 -2 0 8 6 -40 280 

1 0 -1 -3 3 8 -35 210 

1 0 0 -4 -1 20 -210 

1 0 -6 -6 50 -420 

1 0 -3 15 -105 

1 0 -5 70 

1 -10 105 

1 -21 

1 

Appendix 3. Partial generating functions for strong embeddings in the body-centred 
cubic lattice ( b  = 1) 

F,= Y8 

F2 = 4 Y"+2 YI4 - 3 Y" - 3 Y8 

F3 = 28 Y 2 2 +  16 Y" -2YZo -40 YI9+ 12 YI8 - 15 YI6-8 Y'5-24Y'4+24Y'3 

-6Y"+ 12 Y'Oi-3 Y8 

F4 = 204 Yr9 + 228 YZS - 120 YZ7 - 466 Y26 + 21 6 Y2' + 45 YZ4 A 262 YZ3 - 90 Y22 

-186Y2'+207Y20+304Y19-225Yi8+ 144Y'7-30Y16+12Y15 

+ 186Y14- 1O4Yl3 - 51 Y"- 12 Y8 

F,= 1562Y36+ 2872Y35- 1632Y34-5440Y33+ 1081 Y3'+3600Y31-2704Y30 

- 4856 Yr9 - 834 YZ8 + 6016 Y27 + 3096 Y26 - 2968 Y2' - 141 1 Y24 

+2568 Yr3+384YZ2+ 1848 YZ1 -2884Y2O-760Yl9+ 1476Y" 

-992YL7-405Y16+96Y1'+200Y14+48Y~3-96Y'2  

+72Y'1+60Y'o+3Y8 

F6= 12 544Y43+32 882 Y42- 15 656Y4' -63 697 Y40- 13 116 Y39+82 316 Y3' 

-20 568 Y3' -97 568 Y36- 15 068 Y3'+ 11 1 046 Y34+ 55 628 Y33 

-40 276 Y3' -77 792 Y3'+ 57 180 Y30+ 40 212 Y29 - 11 127 YZs 
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- 26 492 YZ7 - 27 200 YZ6+ 13 848 Yz5 - 2262 YZ4+ 6892 YZ3 

-7758Y22-812Y21-2200Y20+7956Y19+8170Y’8-8952Y17+ 144YI6 

+2460Y15+342Y14-444Y13-827Y12+264Y11-36Y10-33  YE. 
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